Heat Recovery at the Building Scale

Passive and active heat recovery approaches

SCCER EIP Annual Conference – 24.09.2020
Bruno Hadengue, Eberhard Morgenroth, Tove A. Larsen, Luca Baldini
Domestic waste water heat recovery

- Passive – Drain water heat recovery with DW-HX
- Active – Collected waste water heat recovery with heat pump
Passive Wastewater Heat Recovery
Active Wastewater Heat Recovery
Passive Wastewater Heat Recovery

Active Wastewater Heat Recovery
Passive HR: NEST - Installation
Passive HR: NEST - Installation

local mode
Passive HR: NEST - Installation

Local mode

Matched flow mode
Passive HR: NEST - Results
Passive HR: NEST - Results

- Shower Outlet Temperature
- Joulia Grey Water output
- Cold Water
- Energy removed from Hot Water
- Joulia Grey Water input
- Preheated Water
- Cold Water Flow
- Energy gain from Cold Water

- Experimental points (ΔT=7°C-10°C)
- Documentation (ΔT=7°C)
- Documentation (ΔT=10°C)
Passive Wastewater Heat Recovery

Active Wastewater Heat Recovery
Active HR: System Model
Active HR: System Model
Active HR: System Model

Domestic Hot Water System

GW Tank

HP Evaporator

HP Condenser

DHW Tank

Space Heating Buffer Tank

Ambient Air (T_{amb}, m_{HP})

City Water

Wastewater

m_{DHW}

m_{SH}

8
Active HR: System Model
Active HR: Domestic Hot Water System

- Stochastic simulation of single water consumption events
- Plumbing layout and pipe losses
- Real water consumption schedules and loads
Active HR: Scenario Tree

Climate

Outside air T
Outside air RH

Rome
Helsinki
Geneva

39 kWh/m² y

B2 (1983)
88 kWh/m² y

Low
2 adults 1 child

Coldest
Median
Warmest

High
5 adults
Active HR: Scenario Tree

Climate

- Outside air T
- Outside air RH

- Rome
- Helsinki
- Geneva

Building

- SH Load
- Heating Curve

 - 39 kWh/m² y

- B2 (1983)
 - 88 kWh/m² y
Active HR: Scenario Tree

Climate
- Outside air T
- Outside air RH
- Rome
- Helsinki
- Geneva

Building
- SH Load
- Heating Curve
- B1 (2003): 39 kWh/m² y
- B2 (1983): 88 kWh/m² y

DHW
- DHW Load
- Low: 2 adults 1 child
- High: 5 adults
Simulation Week

Active HR: Scenario Tree

<table>
<thead>
<tr>
<th>Climate</th>
<th>Outside air T</th>
<th>Rome</th>
<th>Helsinki</th>
<th>Geneva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outside air RH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating Curve</td>
<td>39 kWh/m² y</td>
<td>88 kWh/m² y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DHW</th>
<th>DHW Load</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 adults 1 child</td>
<td>5 adults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation Week</th>
<th>Coldest</th>
<th>Median</th>
<th>Warmest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Active HR: Results (1/2)
Active HR: Results (1/2)

<table>
<thead>
<tr>
<th>City</th>
<th>Average COP Increase [%]</th>
<th>Average Electricity Savings [kWh/week]</th>
<th>Average Electricity Savings [kWh/year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geneva</td>
<td>19.7</td>
<td>8.8</td>
<td>460</td>
</tr>
<tr>
<td>Rome</td>
<td>29.3</td>
<td>10.1</td>
<td>525</td>
</tr>
<tr>
<td>Helsinki</td>
<td>12.2</td>
<td>7.6</td>
<td>395</td>
</tr>
</tbody>
</table>
Active HR: Results (2/2)
Active HR: Results (2/2)
Active HR: Results (2/2)
Active HR: Results (2/2)
Conclusions

- Domestic hot water systems are an increasingly significant share of the total energy consumption in buildings – passive and active heat recovery systems increase their efficiency.
Conclusions

- Domestic hot water systems are an increasingly significant share of the total energy consumption in buildings – passive and active heat recovery systems increase their efficiency.

- Passive heat recovery:
 - Experimental setup in NEST – Dübendorf
 - Experiments indicated **heat saving potential of up to 20% for DHW production**, amounting to about 750 kWh/a per household
Conclusions

- Domestic hot water systems are an increasingly significant share of the total energy consumption in buildings – passive and active heat recovery systems increase their efficiency.

- Passive heat recovery:
 - Experimental setup in NEST – Dübendorf
 - Experiments indicated **heat saving potential of up to 20% for DHW production**, amounting to about 750 kWh/a per household

 300-600 GWh/a electricity savings
 30’000-60’000 tons CO₂
Conclusions

- Domestic hot water systems are an increasingly significant share of the total energy consumption in buildings – passive and active heat recovery systems increase their efficiency.

- Passive heat recovery:
 - Experimental setup in NEST – Dübendorf
 - Experiments indicated **heat saving potential of up to 20% for DHW production**, amounting to about 750 kWh/a per household

- Active heat recovery:
 - Simulation study over wide range of scenarios (climate – building performance – DHW load – season)
 - In CH: **20% COP increase** – 460 kWh/a per household **electricity savings**.

300-600 GWh/a electricity savings

30’000-60’000 tons CO₂
Conclusions

- Domestic hot water systems are an increasingly significant share of the total energy consumption in buildings – passive and active heat recovery systems increase their efficiency.

- Passive heat recovery:
 - Experimental setup in NEST – Dübendorf
 - Experiments indicated **heat saving potential of up to 20% for DHW production**, amounting to about 750 kWh/a per household

 300-600 GWh/a electricity savings
 30’000-60’000 tons CO₂

- Active heat recovery:
 - Simulation study over wide range of scenarios (climate – building performance – DHW load – season)
 - In CH: **20% COP increase** – 460 kWh/a per household **electricity savings**.

 200 GWh/a electricity savings
 20’000 tons CO₂